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a b s t r a c t

Edge disjoint realization problems have connections for example to discrete tomography.
In this paper, we consider the edge disjoint caterpillar realizations of tree degree
sequences. We give necessary and sufficient conditions when two tree degree sequences
have edge disjoint caterpillar realizations. We conjecture that an arbitrary number of tree
degree sequences have edge disjoint realizations if every vertex is a leaf in at most one
tree. We prove that the conjecture is true if the number of tree degree sequences is at
most four. We also prove that the conjecture is true if n ≥ max{22k − 11, 396}, where
n is the number of vertices and k is the number of tree degree sequences.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A degree sequence D = d1, d2, . . . , dn is a sequence of non-negative integers. A degree sequence is graphical if there
s a vertex-labeled graph G in which the degrees of the vertices are exactly D. Such a graph G is called a realization of D.
he color degree matrix problem, also known as an edge disjoint realization, edge packing or graph factorization problem,
s the following: Given a k × n degree matrix D = {{d1,1, d1,2, . . . , d1,n}, {d2,1, d2,2, . . . , d2,n}, . . . , {dk,1, dk,2, . . . , dk,n}}, in
which each row of the matrix is a degree sequence, decide if there is an ensemble of edge disjoint realizations of the
degree sequences. Such a set of edge disjoint graphs is called a realization of the degree matrix. A realization can also
be presented as an edge colored simple graph, in which the edges with a given color form a realization of the degree
sequence in a given row of the color degree matrix. This problem is related to discrete tomography [9], which has many
applications in industry [7,8].

The existence problem in general is a hard computational problem for any k ≥ 2 [3]. However, it is easy for some
special cases. One special case is when the degree matrix is very sparse, the total sum of the degrees is at most 2n − 1,
where n is the number of vertices. In that case, necessary and sufficient conditions exist for realizing a colored degree
matrix with a colored forest [9]. Another interesting case is when each degree sequence is a degree sequence of a tree. We
will call these tree degree sequences. Kundu proved that two tree degree sequences have edge disjoint tree realizations
if and only if the sum of the degree sequences is graphical [10]. He also proved that a similar statement is not true for
three degree sequences. He gave an example of three tree degree sequences such that the sum of any two of them is
graphical and the sum of all three degree sequences is graphical, but the degree sequences do not have edge disjoint tree
realizations [11]. Besides, he proved that three tree degree sequences always have edge disjoint tree realizations if the
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minimum sum of the degrees on each vertex is at least 5 [11]. This condition includes the case when each vertex is a leaf
in at most one of the trees. We conjecture that a degree matrix always has edge disjoint caterpillar realizations if each
row is a tree degree sequence and each vertex is a leaf in at most one of the trees.

In this paper we prove that this conjecture holds when the number of degree sequences is at most four or the number
f vertices is at least max{22k− 11, 396}, where k is the number of rows in the tree degree matrix. Furthermore, we give
necessary and sufficient condition when two tree degree sequences have edge disjoint caterpillar realizations.

. Preliminaries

In this section, we give some formal definitions and lemmas we use throughout the paper. First, we formally define
egree sequences and degree matrices, along with the different types of realizations we consider in this paper.

efinition 1. A degree sequence D = d1, d2, . . . , dn is a list of non-negative integers. A degree sequence is graphical if
here exists a simple graph G whose degrees are exactly D. Such a graph is a realization of D. A degree sequence D is a
ree degree sequence if each degree is positive and

∑n
i=1 di = 2n − 2.

A degree 1 vertex is called a leaf. A degree sequence is a path degree sequence if it has exactly two leaves. A realization
f a tree degree sequence is called a caterpillar if its non-leaf vertices form a path. This path of non-leaf vertices is called
he backbone.

efinition 2. A matrix D = {{d1,1, d1,2, . . . , d1,n}, {d2,1, d2,2, . . . , d2,n}, . . . , {dk,1, dk,2, . . . , dk,n}} of non-negative integers
s called a degree sequence matrix.

A degree sequence matrix is a tree degree sequence matrix if each row is a tree degree sequence. A tree degree matrix
as no common leaves if for every triple (i, j, l), di,j = 1 implies dl,j ̸= 1.
An edge colored simple graph G is called a realization of a degree matrix D ∈ Nk×n, if it is colored with k colors, and

for each color ci, the subgraph containing the edges with color ci is a realization of the ith row of D. A realization is called
caterpillar realization if for each color, the corresponding subgraph is a caterpillar.

The Erdős–Gallai theorem gives necessary and sufficient conditions when a degree sequence is graphical.

Theorem 2.1 ([5]). A degree sequence f1 ≥ f2 ≥ . . . , ≥ fn is graphical if and only if the sum of the degrees is even, and for
each 1 ≤ s ≤ n the inequality

s∑
i=1

fi ≤ s(s − 1) +

n∑
j=s+1

min{s, fj} (1)

holds.

We refer to the inequalities in Eq. (1) as Erdős–Gallai inequalities, or E–G inequalities for short.
When a degree sequence is a sum of tree degree sequences, then only the first few Erdős–Gallai inequalities must be

checked, as the following lemma states.

Lemma 2.2 ([6]). Let F = f1 ≥ f2 ≥ · · · ≥ fn be the sum of k arbitrary tree degree sequences. Then the Erdős–Gallai inequalities
in Eq. (1) hold for all s ≥ 2k.

In this paper, we will need a stronger statement summarized in the following lemma.

Lemma 2.3. Let D be a 2 × n tree degree matrix, in which the second row is a path degree sequence. If n ≥ 6, then the E–G
inequalities for the summed degree sequence fj := d1,j + d2,j hold for all s ≥ 2.

Proof. Notice that the sum of a tree degree sequence is 2n− 2 and
∑n

j=3 d1,j ≥ n− 2. Also, a path degree sequence does
not have a degree larger than two. Therefore, when s = 2, the left-hand side of the E–G inequality is bounded above by

f1 + f2 ≤ 2n − 2 − (n − 2) + 2 × 2 = n + 4,

The right-hand side is precisely

2 +

n∑
j=3

min{2, fj} = 2 + 2(n − 2) = 2n − 2,

since each fj is at least two. Then it is sufficient to show that

n + 4 ≤ 2n − 2
which holds when 6 ≤ n.
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When s ≥ 3, we have on the left-hand side of the E–G inequality that
s∑

i=1

fi ≤ 4n − 4 − 3(n − s) + 2 = n + 3s − 2,

ince the total sum of the degrees is 4n − 4, and every column sum is at least 3, except at most two of them. For similar
easons, we have the lower bound of the right-hand side of the E–G inequality:

s(s − 1) + 3(n − s) − 2 ≤ s(s − 1) +

n∑
j=s+1

min{s, fj}.

herefore, the inequality holds as long as

n + 3s − 2 ≤ s(s − 1) + 3(n − s) − 2,

hat is,

0 ≤ s2 − 7s + 2n = s2 − 7s + 12 + 2(n − 6) = (s − 3)(s − 4) + 2(n − 6),

here 2(n − 6) ≥ 0. Since s ≥ 3, the inequality holds. □

In this paper, we are interested in the caterpillar realizations of tree degree matrices. Our main conjecture is the
ollowing:

onjecture 1. Let D = {{d1,1, d1,2, . . . , d1,n}, {d2,1, d2,2, . . . , d2,n}, . . . , {dk,1, dk,2, . . . , dk,n}} be a tree degree matrix without
ommon leaves. Then D has a caterpillar realization.

A special case is when the degree matrix contains path degree sequences without common leaves. It is well known
hat such degree matrices have caterpillar realizations, formally stated and proved in the following lemma:

emma 2.4. Let D = {{d1,1, d1,2, . . . , d1,n}, {d2,1, d2,2, . . . , d2,n}, . . . , {dk,1, dk,2, . . . , dk,n}} be a tree degree matrix without
common leaves. Furthermore, assume each row is a path degree sequence. Then, D has edge disjoint path realizations.

Proof. We are going to explicitly construct these realizations. This construction is known as the Waleczki construction [2].
First observe that n ≥ 2k, otherwise D cannot accommodate the 2k leaves with at most one leaf in each column.

Without loss of generality (since we can rearrange the rows and columns), we can say that d1,1 = 1, d
1,
⌈
n+2
2

⌉ = 1,

d2,2 = 1, d
2,
⌈
n+2
2

⌉
+1

= 1, . . ., dk,k = 1, d
k,
⌈
n+2
2

⌉
+k−1

= 1. Then the ith path contains the edges (vi, vi+1), (vi+1, vn+i−1),

(vn+i−1, vi+2), (vi+2, vn+i−2), etc., where n + i − j is considered modulo n, taking a value from the set {1, 2, . . . , n}. □

Some of our proofs are based on induction using the existence of rainbow matchings. We define them below.

Definition 3. Let G be an edge-colored simple graph. A rainbow matching of size k of G is a matching of size k in G such
that no two edges have the same color.

3. Sufficient and necessary condition for two edge-disjoint caterpillar realizations

Bérczi et al. [4] gave the following example of a tree degree matrix:

D =

(
5 2 2 2 2 2 1 1 1 1 1
5 2 2 2 2 2 1 1 1 1 1

)
. (2)

The degree matrix in Eq. (2) has edge disjoint tree realizations, but does not have edge disjoint caterpillar realizations. For
D to have a caterpillar realization, each vertex can have at most two adjacent non-leaf edges per caterpillar. Notice that
the first vertex has degree 10. At most 2 ·2 of these can be non-leaf edges. So, this vertex is adjacent to at least 6 vertices
which are leaves. However, there are only five vertices which are leaves in any of the trees. As one can see, it is a naturally
necessary condition that the maximum summed degree cannot be larger than 4 more than the number of vertices which
are leaves in any of the trees. In this section, we show that this together with the condition that the summed degree
sequence is graphical, are necessary and sufficient conditions to produce edge disjoint caterpillar realizations.

Theorem 3.1. Let D be a 2 × n degree sequence matrix. Then D has a caterpillar realization if and only if the following
conditions hold:

1. For both i = 1 and i = 2,
n∑

j=1

di,j = 2n − 2.
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Fig. 1. The case distinctions in Theorem 3.1. See text for details.

2. The degree sequence

d1,1 + d2,1, d1,2 + d2,2, . . . , d1,n + d2,n

is graphical.
3. It holds that

dmax ≤ |S| + 4

where

dmax := max
j

{
d1,j + d2,j

}
and

S :=
{
j | min{d1,j, d2,j} = 1

}
.

roof. Conditions 1 and 2 are clearly necessary. Condition 3 is also necessary, since any non-leaf vertex will have at most
wo non-leaf neighbors in a caterpillar realization. If two caterpillar realizations are edge-disjoint, at least d1,i + d2,i − 4
leaves must be a neighbor of vi in one of the caterpillar realizations.

Now we show that the conditions are also sufficient. This part of the proof involves a lengthy case distinction, see also
Fig. 1 for an overview.

Let D be a 2 × n degree matrix that satisfies the conditions in the given theorem. Then the minimum column sum in
D is either 3 or 2. If the minimum sum is 3, then there is a caterpillar realization, according to Theorem 4.4 (Case 0 in
Fig. 1). Observe the non-trivial corollary that the necessary conditions hold if the minimum column sum is 3.

If the minimum column sum is 2, then either there exists j1 ̸= j2, such that d1,j1 > 2 and d2,j2 > 2, or there do not
exist two such distinct numbers j1 and j2. We prove that the conditions are sufficient for both cases, they will be denoted
by Case I (distinct j1 and j2 exist) and Case II (distinct j1 and j2 do not exist).

Case I.
In this case, we exhibit a matrix D′ of n − 1 columns and show that D′ also satisfies the conditions. By induction, we

assume that D′ has a realization G′, and from G′ we construct a realization of D.
Order the columns in decreasing order by their column sums, and w.l.o.g. let d1,1 > 2 (we can reorder the degree

sequences if not). If there exist j1 and j2 such that j1 ̸= j2, both of them are in {1, 2}, d1,j1 > 2 and d2,j2 > 2, then fix such
j1 and j2. Otherwise, let j1 be 1 and let j2 be the smallest index for which d2,j2 > 2.

Let D′ denote the degree matrix we get from D by removing a column with sum 2 and subtracting 1 both from d1,j1
and d2,j2 . We are going to prove that D′ also satisfies the conditions given in the theorem.

Clearly, D′ is a tree degree matrix. Also, we remove a vertex that is a leaf in both caterpillars (namely, it is in set S
defined in Theorem 3.1), and we also subtract 1 from the largest degree. If the first vertex has the unique largest summed
degree in D, then it will still be largest in G′ (though it may not be unique). Thus, condition 3 from the theorem also holds
for D′. If the first vertex does not have the unique largest summed degree, then the inequality in condition 3 cannot be
sharp for D, and thus will also hold for D′. Indeed, either d + d ≥ d or d + d ≥ d , due to the pigeonhole
1,1 1,2 max 2,1 2,2 max
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principle (it is possible that both degree sums are exactly dmax). Any tree with two vertex degrees d1 and d2 has at least
d1 + d2 − 2 leaves, thus we get that |S| ≥ dmax − 2.

Therefore, we only have to prove that the column sums of D′, f ′

j := d′

1,j + d′

2,j, form a graphical degree sequence. To
prove it, it is sufficient to show that the first three E–G inequalities hold, according to Lemma 2.2.

The first E–G inequality is violated if equality holds in the first E–G inequality regarding D and f1 is not the unique
maximum. If f1 := d1,1 + d2,1 is the unique largest degree, then the first E–G inequality will also hold for f ′. Indeed, both
sides of the E–G inequality are decreased by 1 (compared to the first E–G inequality for f ).

If f1 = f2 and j2 /∈ {1, 2} then d2,1 + d2,2 ≤ 4, so we get that

f1 + f2 = [d1,1 + d1,2] + [d2,1 + d2,2] ≤ [2n − 2 − (n − 2)] + [4] = n + 4

therefore, f1 is at most
⌊ n

2

⌋
+ 2. We need that⌊n

2

⌋
+ 2 ≤ n − 2

which holds if n ≥ 7. If n = 6, then the only possible tree degree matrix in which neither of the rows is a path degree
sequence, both f1 and f2 are 5, the smallest column sum is 2 and j2 /∈ {1, 2} is(

3 3 1 1 1 1
2 2 3 1 1 1

)
,

however, in this case the column sums are not graphical. If n = 5, then the only possible degree matrix in which neither
of the rows is a path degree sequence, both f1 and f2 are 4, the smallest column sum is 2 and j2 /∈ {1, 2} is(

3 2 1 1 1
1 2 3 1 1

)
,

however, in this case the column sums are not graphical. Therefore, whenever the column sums of D are graphical, the
column sums of D′ satisfy the first E–G inequality.

We now focus on the second E–G inequality. Assume that f ′ violates the second E–G inequality. Then

f ′

1 + f ′

2 > 2 + 2(n − 3) = 2n − 4.

(Note that f ′ has only n − 1 entries.) However, then f ′

1 would be at least n − 1, so then f ′ would violate the first E–G
inequality. We proved that f ′ satisfies the first E–G inequality, a contradiction.

Finally, we focus on the third E–G inequality. Assume that f ′ violates the third E–G inequality. Then

f ′

1 + f ′

2 + f ′

3 > 6 + 2(n − 4) = 2n − 2.

(Note that f ′ has only n− 1 entries.) Then f ′

1 + f ′

2 + f ′

3 is at least 2n− 1, and then the sum of the degrees of the remaining
n − 4 terms is at most 2n − 7. If f ′

1 + f ′

2 + f ′

3 = 2n − 1, then f ′

4 = 3, and the third E–G inequality is not violated. If
f ′

1 + f ′

2 + f ′

3 = 2n, then f ′

4 = 2. However, then f1 + f2 + f3 = f ′

1 + f ′

2 + f ′

3 + 2, then f also violates the third E–G inequality,
a contradiction. It is not possible that f ′

1 + f ′

2 + f ′

3 > 2n for f ′

n−1 would be at most 1. Therefore, the third E–G inequality
holds for f ′ if it holds for f .

Let G′ be a caterpillar realization of D′, by induction on the number of vertices, we can assume that such a realization
exists. Then we can get a caterpillar realization of D from G′ by adding a new vertex v to G′ and connecting v to vj1 with
an edge of the first color and to vj2 with an edge of the second color.

Case II.
If there do not exist distinct ji and j2, where d1,j1 > 2 and d2,j2 > 2, then there are three cases:

(a) Both degree sequences are paths.
(b) Only one of the degree sequences is a path.
(c) There is only one vertex, v1, such that d1,1 > 2 and d2,1 > 2.

We will denote these sub-cases by II(a), II(b) and II(c).

Case II(a)
If both degree sequences are paths, then any tree realization is also a caterpillar realization. Kundu’s theorem says

there is a tree realization if the sum of the degree sequences is graphical [10].

Case II(b)
If one of the degree sequences is a path, then without loss of generality, the second degree sequence is a path. When

n ≤ 6, there are five possible tree degree matrices satisfying that the first row is not a path degree sequence, the second
row is a path degree sequence, there is at least one column with sum 2 and the column sums form a graphical degree
sequence:

1.
(
3 2 1 1 1

)

1 2 2 2 1
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2.
(
3 2 2 1 1 1
1 2 2 2 2 1

)
3.
(
3 2 2 1 1 1
2 2 1 2 2 1

)
4.
(
3 2 2 1 1 1
2 2 2 2 1 1

)
5.
(
4 2 1 1 1 1
1 2 2 2 2 1

)
In each case, we obtain a tree degree matrix D′ by subtracting 1 from the underlined entries and removing a column

ith sum 2. These D′ matrices have caterpillar realizations since either they are path degree sequences with graphical
olumn sum or the minimum degree is 3 (or both). In each case, the caterpillar realization G′ can be extended to a
aterpillar realization of D by adding one more vertex v and connecting v to the vertices where 1 was subtracted from
the degree using the appropriate color.

Now we consider the case when n ≥ 7. We prove the theorem for this sub-sub-case by induction on the number
of vertices. Assume that the columns of D are in decreasing order by their column sum, and amongst the same column
sums, order the vertices lexicographically based on the two entries in the column. Since the second row is a path degree
sequence, and there is a column with sum 2, at least one of the entries d2,1 and d2,2 is 2. If d2,2 = 1, then let D′ be the
degree matrix we obtain by removing 1 from d2,1 and d1,2 and removing a column with sum 2. Otherwise, let D′ be the
egree matrix we obtain by removing 1 from d1,1 and d2,2 and removing a column with sum 2. We show that the degree
equence f ′

= f ′

1, f
′

2, . . . , f
′
n where f ′

j := d′

1,j + d′

2,j is graphical. Observe that the second degree sequence in D′ is a path,
nd the number of columns in D′ is at least 6. Therefore, it is sufficient to show that the first E–G inequality holds, due
o Lemma 2.3.

If at least the first three columns have the same column sum in D, then the largest degree is at most 4n−4−3(n−3)+2
3 =

n+7
3 . This is because the sum of the degrees in the two trees is 4n − 4, and on the remaining n − 3 columns, all column
ums are at least 3 except at most two of them (recall that the second degree sequence is a path degree sequence). We
eed that

n + 7
3

≤ n − 2,

that is,

6.5 ≤ n,

which holds. Then the first E–G inequality will also hold for F ′. If f2 > f3, then f ′

1 = f1 −1. Since in this case 1 is subtracted
from both sides of the first E–G inequality (compared to the first E–G inequality for f ), the first E–G inequality holds for
f ′.

Therefore, the column sums of D′ form a graphical degree sequence. By induction hypothesis, D′ has a caterpillar
realization, G′. Then D also has a caterpillar realization by extending G′ with a vertex and connecting it to the vertices
where 1 was subtracted from the degree using the appropriate color.

Case II(c)
Finally, if there is only one vertex such that d1,j > 2 and d2,j > 2, then this is the vertex with the largest summed

degree. We prove the following two observations:

1. The number of columns with degree sum 2 is at most four. Indeed, observe that the first tree has d1,1 leaves while
the second tree has d2,1 leaves. Since the number of vertices which are leaves in at least one of the trees must be
at least d1,1 + d2,1 − 4, at most four vertices might be leaves in both trees.

2. The number of columns with degree sum 4 is at least the number of columns with degree sum 2. This is because
the summed degree sequence is graphical, therefore the E–G inequality holds with s = 1. That is, the number of
vertices is at least d1,1 + d2,1 + 1. Also observe that the number of vertices with degree sum smaller than 4 is
d1,1 + d2,1 minus the number of vertices with degree sum 2. Therefore, if nk denotes the number of vertices with
degree sum k, we get from the first E–G inequality that

n4 + n3 + n2 ≥ d1,1 + d1,2

and we also have the observation that

n3 + n2 = d1,1 + d1,2 − n2.

From this, it is easy to see that n4 is indeed at least n2.

Therefore, we have the following four possible sub-sub-cases:

1.
(
d1,1 2 . . . 2 2 . . . 2 1 . . . 1 1

)

d2,1 2 . . . 2 1 . . . 1 2 . . . 2 1
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2.
(
d1,1 2 2 . . . 2 2 . . . 2 1 . . . 1 1 1
d2,1 2 2 . . . 2 1 . . . 1 2 . . . 2 1 1

)
3.

(
d1,1 2 2 2 . . . 2 2 . . . 2 1 . . . 1 1 1 1
d2,1 2 2 2 . . . 2 1 . . . 1 2 . . . 2 1 1 1

)

4.

(
d1,1 2 2 2 2 . . . 2 2 . . . 2 1 . . . 1 1 1 1 1
d2,1 2 2 2 2 . . . 2 1 . . . 1 2 . . . 2 1 1 1 1

)
In each case, let D′ be a tree degree matrix we obtain by removing all columns with degree sum 2, removing 1 from each
underlined degree and removing 2 from each double underlined degree. The so-obtained matrices will be tree degree
matrices without common leaves. Therefore, D′ has a caterpillar realization G′. W.l.o.g., we assume that the vertices that
have degree 1 in one of the degree sequences after removing 1 or 2 are leaves adjacent to an end vertex of the backbone
of the caterpillar. We can construct a caterpillar realization of D by adding the appropriate number of vertices to G′ and
connecting these to vertices where 1 or 2 was subtracted from the degree using the appropriate color. It is easy to see
that in each case, we can add these edges without introducing parallel edges. Since we added leaves to backbone vertices
or to leaves that were adjacent to end vertices of the backbone, the so-obtained edge disjoint tree realization will also be
a caterpillar realization. □

4. Proving Conjecture 1. for k ≤ 4

In this section we are going to prove Conjecture 1. for all k ≤ 4. The proof is based on induction. The base case is the
case when each degree sequence is a path degree sequence. Those degree matrices have edge disjoint path realizations,
according to Lemma 2.4. In the inductive step, we will find rainbow matchings in sufficiently long paths. The following
two lemmas state that such paths exist.

Lemma 4.1. Let D ∈ Nk×n be a tree degree matrix without common leaves. Then in any caterpillar realization of D, each
caterpillar has a path of length at least 2k − 1.

Proof. We will show this by contradiction. Assume there exists a degree sequence that does not have a path of length
2k− 1. Then, it has at most 2k− 3 internal nodes and at least n− 2k+ 3 leaves. Each of the other tree degree sequences
has at least two leaves. So altogether, there are at least n − 2k + 3 + 2(k − 1) = n + 1 leaves. However, there are only n
vertices. So, there must exist one vertex that is a leaf in two of the caterpillars, producing a contradiction. □

Lemma 4.2. Let D = {D1,D2, . . . ,Dk} ∈ Nk×n be a tree degree matrix without common leaves. If n ≥ 2k+ 2 and k ≥ 4, then
within (k − 1) arbitrary caterpillars of any caterpillar realization of D, there exists a path of length at least 2k + 1.

Proof. Assume the contrary. Then, there exists a set of k−1 tree degree sequences in D such that every Di does not have
a path of length 2k + 1. In other words, each of them must have at most (2k + 1) − 2 = 2k − 1 internal nodes, and thus,
must have at least n − 2k + 1 leaves. Hence, there are at least

(k − 1)(n − 2k + 1) + 2 = kn − n − 2k2 + 3k + 1

leaves, which can be at most n. From this, we get that

n ≤
2k2 − 3k − 1

k − 2
.

owever, since n ≥ 2k + 2, we must have that

2k2 − 3k − 1
k − 2

≤ 2k + 2,

implying that k ≤ 3, a contradiction. □

The following lemma is on the existence of a certain vertex in a tree degree matrix without common leaves.

emma 4.3. Let D ∈ Nk×n be a tree degree matrix without common leaves. Assume that not all rows are path degree sequences.
Then there exists a column with the following properties:

1. The sum of the column is 2k − 1.
2. The column contains a 1 in a row which is not a path degree sequence.

The proof is given in [6].
Now, we are ready to prove the conjecture for k ≤ 4. With only one tree degree sequence, it is clear that we have a

isjoint caterpillar realization. For k = 2, the conjecture was proved in [4], however, here is a simplified proof.
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Theorem 4.4. Let D be a 2 × n tree degree matrix without common leaves. Then D has a caterpillar realization.

Proof. The proof is constructive, using an induction on the number of vertices. If both sequences are path sequences,
then they have edge disjoint realizations, according to Lemma 2.4. Assume that at least one of the degree sequences is
not a path; w.l.o.g., we can assume that the first degree sequence is not a path. According to Lemma 4.3, there is a vertex
v which is a leaf in the first degree sequence, and has degree 2 in the second degree sequence (the two rows in D might
have to be swapped). Let vj be a vertex with degree at least 3 in the non-path degree sequence. Then removing the column
representing vertex v and subtracting 1 from d1,j yields a tree degree matrix D′ without common leaves. By our induction
hypothesis, it has a caterpillar realization.

Let G′ be a realization of D′. Its caterpillar realization of the second row of D′ contains at least one edge in its backbone.
At either end, there is one edge connecting an endpoint to the backbone. Altogether, they form a path of at least three
edges. At most two of them can be incident to vj. Consider an edge not incident to vj; let it be (u, w). We can construct
a caterpillar realization of D from G′ in the following way. Add vertex v to G′. Connect v and vj with an edge of the first
color. Remove edge (u, w) and connect v to both u and w with an edge of the second color. The subgraph of each color
is a caterpillar realization of the appropriate row of D, and they are edge-disjoint. Indeed, the caterpillar of the first color
in G′ is extended with a leaf, and vj is not a leaf in this caterpillar. Vertex v is a degree 2 vertex in the second caterpillar,
either inserted into the backbone or inserted between a leaf and the adjacent last vertex of the backbone. In both cases,
the resulting tree is a caterpillar. □

The proof is very similar for three and four caterpillars. Just instead of a single edge (u, w) avoiding vertex vj, we have
to find a rainbow matching avoiding vj in appropriate paths. Since we will use this technique multiple times throughout
the paper, we introduce it in a separate lemma.

Lemma 4.5. Let D ∈ Nk×n be a tree degree matrix without common leaves. Let D′
∈ Nk×(n−1) be a tree degree matrix

without common leaves that we obtain from D by deleting a column containing all 2’s except a 1 in row i, and subtracting
1 from an entry di,j > 2. Let G′ be an arbitrary caterpillar realization of D′. For the realized caterpillar of row l, let P l be the
path containing the backbone of the caterpillar and two additional edges connecting arbitrary leaves to the end vertices of the
backbone. If

⋃
l̸=i P

l contains a rainbow matching of size k − 1 avoiding vj, then D has a caterpillar realization.

Proof. We are going to explicitly construct the caterpillar realization of D from G′. We add a vertex v to G′. Vertex vj is
connected to v with an edge of color i. For each edge (u, w) in the rainbow matching, the edge is removed and both u
and w are connected to v with an edge of the color of the removed edge.

We claim this is a caterpillar realization of D. Indeed, for each color, we got a caterpillar realization of the appropriate
row. In case of color i, the caterpillar in D′ is extended with a leaf, and the leaf is connected to a backbone vertex. For all
other colors l, a degree 2 vertex is inserted into P l. The so-obtained tree is a caterpillar. No parallel edges are introduced,
because the new edges are formed from v and vertices incident to edges in a rainbow matching which specifically avoids
vj. □

Theorem 4.6. Let D ∈ N3×n be a tree degree matrix without common leaves. Then D has a caterpillar realization.

Proof. The proof is again constructive, using an induction on the number of vertices. The base case is the tree degree
matrix in which each row is a path degree sequence. In this case, Lemma 2.4 provides edge disjoint path realizations.

Assume not all the rows are path degree sequences. According to Lemma 4.3, there exists a column l which contains,
w.l.o.g., 1 in the first row and 2 in the other two rows. We can also assume that the first row is not a path degree sequence,
implying there is a vertex vj such that d1,j ≥ 3. Consider D′ obtained from D by removing column l and subtracting 1 from
d1,j. Matrix D′ is a tree degree matrix without common leaves, and based on the inductive assumption, it has a caterpillar
realization. Let the union of these caterpillars be denoted by G′.

We want to find a rainbow matching in the remaining two rows avoiding vj. The realized caterpillars of the second
and third rows both contain a path of length at least 5, according to Lemma 4.1. In both paths, at most two edges are
incident to vj, so there are at least three edges in each caterpillar not incident to vj. These three edges form a path of
length 3 or a path of length 2 with a separated edge. Suppose all three of these edges from one caterpillar are blocked
by the other caterpillar. In both configurations, at most two of the three edges in one of the caterpillars can block all the
three edges in the other caterpillar, as shown in Fig. 2. Therefore, there exists at least one of the three edges, call it e1,
not incident to vj and not adjacent to some other edge e2 in the other caterpillar. Furthermore, e2 is not incident to vj.
Therefore, e1 and e2 form a rainbow matching with two prescribed colors and avoid vj. By Lemma 4.5, D has a caterpillar
realization. □

The proof for k = 4 uses similar ideas, however, we need base cases where n ≤ 10. Also, finding an appropriate
rainbow matching is not easy. So, we separately present it in the following lemma.

Lemma 4.7. Let D = {D1,D2,D3,D4} ∈ N4×n be a tree degree matrix without common leaves. Let G be a caterpillar realization
of D. Assume vj is an arbitrary vertex, and G′

⊂ G is a caterpillar realization of an arbitrary three of the four tree degree
sequences. If n ≥ 10, there exists a rainbow matching of size three in G′

\ {v }.
j
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Fig. 2. Only the two dashed edges can both block all three solid edges. See the text for details.

Fig. 3. The graph shows the situation when vj is an internal node of the green path (longest path drawn in black). The thick gray path represents the
blue path, while the thin gray edges represent the red edges. The dashed edges represent the blocked edges. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Proof. By applying Lemma 4.2 and choosing k = 4, we derive a special case for four tree degree sequences. Within any
three out of four caterpillar realizations of the tree degree sequences, there exists a path of length at least 9. Let the
degree sequence whose realization contains the longest path be colored green, and the other two be colored blue and
red. We have three cases. Case 1: vj is an internal node of the green degree sequence. Case 2: vj is a leaf of the green
degree sequence. Case 3: The green path does not contain vj. We will illustrate these three cases separately.

Fig. 3 illustrates the first general case when vj is an internal node of the green degree sequence. It only includes the
longest path in the realization of the green degree sequence. As we are considering the graph G′

\{vj}, the edges connected
o vj are not considered. Two endpoints of the green path are leaves. So, they cannot be leaves of the blue and red degree
equences. Hence, these endpoints must each be adjacent to two red and two blue edges. Call those eight edges endpoint
dges. We have three possible scenarios.

cenario 1: Less than two of the endpoint edges are incident to vj.
At most one endpoint edge is blocked by vj. Assume the color of this edge is blue. Consider the two red endpoint edges

t this end of the green path, and the two blue endpoint edges at the opposite end of the green path. If none of these
ndpoint edges is incident to the two endpoints of the green path, then choose one of the red edges. It blocks at most one
f the blue edges, so we have a pair of red and blue edges which is not adjacent. If one of these endpoint edges is incident
o the two endpoints of the green path, then w.l.o.g. we can assume that it is a blue edge. Select the other blue endpoint
dge, it blocks at most one of the red edges, therefore we again have a red and a blue edge that are not adjacent. For
he green edges, we know that each blue and red edge in our rainbow matching set will block one leaf in green and at
ost another two edges in the green path. Also, vj blocks two green edges. Altogether, at most eight edges in the green
ath are blocked and there must exist one green edge that we can select. In this way, we find a rainbow matching of size
hree.

cenario 2: Two endpoint edges of the same color are incident to vj.
W.l.o.g., we can assume that the two endpoint edges incident to vj are blue. Select any of the red endpoint edges, call

t e. It is adjacent to at most four blue edges, one of these blue edges is also incident to vj, and there is another blue edge
ncident to vj. However, there are at least seven blue edges in the path of the blue caterpillar. So, there must be at least
wo blue edges which are neither adjacent to e nor incident to vj, call them f1 and f2. The vertex vj blocks two green edges
rom the green path. Edge e blocks at most three green edges from the green path. There are at least four remaining green
dges. It is impossible that both f1 and f2 block all these four edges. Select a blue edge from {f1, f2} that does not block
he green edges incident to e or vj. Also, select e and the green edge that is not adjacent to the selected blue edge, e, or
j. These three edges form the appropriate rainbow matching.

cenario 3: Two endpoint edges of different color are adjacent to vj.
In this scenario, there are two blue edges and a red edge adjacent to one end of the green path. There are two red

dges and a blue edge adjacent to the other end of the green path. None of these blue or red edges are incident to vj.
ven if this ensemble of edges are only five edges because the two ends of the green path are connected with a red or a
lue edge, there is an edge at one of the ends of the green path, w.l.o.g., we can say it is a blue edge, and there are two
ed edges at the other end. The blue edge can block at most one of the red edges. We have disjoint red and blue edges

t the two ends of the green path. They block at most six of the green edges, and vj blocks two of the green edges. So,
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Fig. 4. The graph shows the situation when vj is a leaf of the green path (longest path drawn in black). The thick gray path represents the blue
path, while the thin gray edges represent the red edges. The dashed edges represent the blocked edges.

there is a green edge not adjacent to the selected red and blue edges and not incident to vj. A pair of these disjoint red
nd blue edges, along with the green edge, forms the appropriate rainbow matching.
Fig. 4 illustrates the second general case. In this case, the edges adjacent to one end of the green path are all blocked.

ne of the blocked edges is a green edge in the path, and at least four of the blocked edges are from the remaining two
olors.
Consider the other end of the green path. At most one color has an edge that connects to the other end of the path.

ssume that edge has color blue. If no edge connects to the other end of the path, choose one arbitrary edge as blue.
elect a blue edge that is not adjacent to the other end of the green path as our first edge for the rainbow matching
et. Assume the other end of the blue edge is vi. Then, we need to find a red edge that is not adjacent to either ends of
he green path or vi. By Lemma 4.1, the red path must contain at least 7 edges. Each of the three vertices will block at
ost two red edges in the red path so there must exist one red edge left over. Select that red edge to be in the rainbow
atching set.
Now we find the green edge. The blue edge blocks one green leaf and another two green edges. The red edge will

lock four green edges. Also, vj blocks one green edge. Altogether, at most eight green edges are blocked. Since there are
ine green edges, we can always select one green edge to put in the rainbow matching set. We have constructed the
ppropriate rainbow matching set of size three.
Finally, in Case 3, vj is not on the green path. In that case, we can find disjoint red and blue edges not incident to vj,

ee the proof of Theorem 4.6. These two edges block at most eight edges from the green path, so there is a green edge
hich is not adjacent to the selected red and blue edges and also not incident to vj. □

We are now ready to prove Conjecture 1 for k = 4.

heorem 4.8. Let D ∈ N4×n be a tree degree matrix without common leaves. Then D has a caterpillar realization.

roof. The proof is constructive and based on induction. The base cases of the induction are those tree degree matrices
hat contain only path degree sequences and the matrices with at most 10 vertices. If all rows are path degree sequences,
hen there exists a caterpillar realization by Lemma 2.4. Up to permuting rows and columns, there are only 14 tree degree
atrices without common leaves. In the Appendix, we list these matrices and give a realization for each of them.
Now assume that D ∈ N4×n is a tree degree matrix without common leaves, where n ≥ 11 and there is at least one row

hich is not a path degree sequence. Then there exists a column l that contains a 1 in a row not containing a path degree
equence, and all other entries in the column are 2, according to Lemma 4.3. Let i be the row such that di,l = 1, and let j
e a column for which di,j > 2. Construct D′ in the following way: remove column l, and subtract 1 from di,j. Then D′ is
tree degree matrix without common leaves, and based on the inductive assumption, it has a caterpillar realization. Let
′ be such a realization. According to Lemma 4.7, the paths in the caterpillar realizations with color other than i contain
rainbow matching avoiding vj. By Lemma 4.5, D has a caterpillar realization. □

. Degree sequences on many vertices

For more than four tree degree sequences on a small number of vertices, it is hard to prove the existence of a rainbow
atching of size k − 1 within an arbitrary k − 1 of the caterpillar realizations, while avoiding a prescribed vertex. It has
een proved that edge disjoint tree realizations exist for any D ∈ Nk×n tree degree matrix without common leaves with
≥ 4k − 1 if edge disjoint tree realizations exist for any D ∈ Nk×(4k−2) tree degree matrix without common leaves [6].
e can prove a similar theorem with caterpillar realizations. For this, we need one more lemma on the lower bound of

he length of the paths in caterpillar realizations.

emma 5.1. Let G be a caterpillar realization of D ∈ Nk×n. Consider any k − 1 of its caterpillars, and arrange them in
ncreasing order based on the lengths of their paths containing their backbones, and the edges connecting leaves to the ends of
he backbone. Then the lth longest path contains at least ( l−1

l )n + 2 edges.
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Proof. The proof is based on contradiction. Assume that the lth longest path has at most ( l−1
l )n + 1 edges. Then this

aterpillar has at most ( l−1
l )n internal nodes, and thus, at least n

l leaves. Since the lengths of the paths are in increasing
rder, there are at least l caterpillars with at least n

l leaves. The other k − l caterpillars have at least two leaves. Then
here are at least

l ×
n
l

+ (k − l) × 2 = n + 2(k − l) > n

leaves altogether, which produces a contradiction for D is a tree degree matrix without common leaves. □

heorem 5.2. Let k be an arbitrary positive integer. If any D′
∈ Nk×(4k−2) tree degree matrix without common leaves has

a caterpillar realization, then any D ∈ Nk×n tree degree matrix without common leaves and n ≥ 4k − 1 has a caterpillar
realization.

Proof. The proof is still based on induction. The base cases are the tree degree matrices in which each row is a path
degree sequence and the tree degree matrices have dimension k × (4k − 2). For any other tree degree matrix D, we can
onstruct the corresponding D′ matrix (as we did in the proofs of the previous theorems), which has a realization G′.
ext, we need to find a rainbow matching in the paths of k−1 selected caterpillars that avoids a prescribed vertex vj. We
laim we can find this rainbow matching in a greedy way. Arrange the caterpillars in increasing order based on the length
f their longest path. We know that the lth caterpillar has a path of length at least ( l−1

l )n + 2, according to Lemma 5.1.

Therefore, it has a matching of size at least
⌈

( l−1
l )n+2
2

⌉
=
⌈ (l−1)n

2l

⌉
+ 1. We know that n is at least 4k − 2 and k is at least

+ 1, thus the matching has a size at least⌈
2(l − 1)(2l + 1)

2l

⌉
+ 1 ≥ 2(l − 1) + 2.

e already selected l − 1 edges in the rainbow matching that block at most 2(l − 1) edges in the matching of the lth
color. Vertex vj can block at most one edge. Therefore, we have an edge of the lth color that is not adjacent to any of the
so-far selected edges, and is not incident to vertex vj. We can select this edge for the rainbow matching.

Since we are able to find a rainbow matching avoiding vj, D has a caterpillar realization, according to Lemma 4.5. □

We also introduce a theorem that unconditionally claims the existence of caterpillar realizations with large number of
ertices. For this theorem, we have a new strategy to directly construct the caterpillar realization for D. Treat a caterpillar
s the union of leaves and a backbone. We define legs as the edges that are incident to a leaf. We also define backbone
dges as all the other edges. The construction strategy is to first construct all the legs and three backbones and then
he remaining backbones. The key point is that we will be able to find backbones as Hamiltonian paths in appropriate
ubgraphs that we obtain by removing the so-far used edges from the complete graph on the given backbone vertices.
n general, we will denote this subgraph as F . The existence of these Hamiltonian paths is proved by a theorem similar
to Ore’s theorem, which states that for a finite and simple graph G, if di + dj ≥ n for every pair of distinct non-adjacent
vertices i and j of G, then G must contain a Hamiltonian cycle [1,12].

In our case, not all vertices satisfy the conditions of Ore’s theorem. However, we will still be able to find Hamiltonian
paths in a given graph F . Our strategy is based on the following observations:

1. All backbones are sufficiently long except the shortest three backbones. Actually, only the shortest backbone might
have o(n) length, where n is the number of vertices; however, we can easily construct the three shortest backbones.
This allows for a better lower bound on the number of vertices necessary to construct the remaining caterpillars.

2. In any tree degree matrix without common leaves, there is at most one vertex (that is, column) with total degree
at least 2n

3 if n is sufficiently large. Actually, for any c > 1
2 , there is at most one vertex whose degree is at least cn

if n is sufficiently large.
3. There are at most 11 vertices whose degrees are larger than n

6 if n is sufficiently large. Actually, for any c ′ > 0,
there are at most a constant number of vertices whose degrees are larger than c ′n if n is sufficiently large.

e are going to precisely state and prove these statements below. These observations provide us the following
onstruction strategy.

1. We first construct the legs of the caterpillars and three shortest backbones. Then we construct all other backbones.
2. To construct the other backbones, we ‘‘cap’’ all the backbone vertices whose degree is small in F , with vertices

whose degree is large in F . The vertices with small degree in F are the same vertices with large degree in D. There
is a constant number of these vertices. Furthermore, at most one of them might have degree larger than 2n

3 in D.
Therefore, at most one of them might have too small degree in F . We cap this vertex for each backbone at the end
of the first phase. Since all other small degree vertices have degree at least n

6 in F , we can easily find high degree
vertices to cap them.

3. We fix the edges used for capping the small degree vertices in F , and extend them to a Hamiltonian path. The
algorithm to find such a Hamiltonian path is very similar to Palmer’s algorithm [1] to find a Hamiltonian cycle in
a graph satisfying the degree conditions in the hypothesis of Ore’s theorem [12].
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Below we state and prove the lemmas concerning the degree properties. The first is a simple observation.

emma 5.3. Let D ∈ Nk×n be a tree degree matrix without common leaves. Assume that n ≥ 6k − 5. Then there exists at
most one vertex whose degree is larger than or equal to 2n

3 .

roof. Assume to the contrary there exist at least two vertices with degree at least 2n
3 . Then the total sum of degrees is

at least
4n
3

+ (n − 2)(2k − 1) = 2kn +
n
3

− 4k + 2.

owever, the sum of degrees is k(2n − 2). If

2kn +
n
3

− 4k + 2 ≤ k(2n − 2),

hen

n ≤ 6k − 6,

contradiction. □

The number of relatively high degree vertices is also small.

emma 5.4. Let D ∈ Nk×n be a tree degree matrix without common leaves. If n ≥ 22k−11, then there are at most 11 vertices
ith degree at least n

6 .

Proof. Assume the contrary. Then the sum of the degrees is at least

12 ·
n
6

+ (n − 12)(2k − 1) = 2nk + n − 24k + 12.

he sum of degrees is k(2n − 2). Then it holds that

2nk + n − 24k + 12 ≤ k(2n − 2)

rom which

n ≤ 22k − 12,

contradiction. □

We are now ready to state and prove the following theorem.

heorem 5.5. Let D ∈ Nk×n be a tree degree sequence without common leaves. Assume that k ≥ 5 and n ≥ max{22k −

1, 396}. Then D has a caterpillar realization.

roof. We explicitly construct a realization in two phases. In the first phase, we construct the legs of the caterpillars, the
ackbones of the three shortest backbones and all the remaining edges of the largest degree vertex. In the second phase,
e construct the remaining backbones.

hase I
Let D = D0,D1, . . . ,Dm be a series of tree degree matrices, such that Dm contains only path degree sequences, and for

ny l = 0, . . . ,m−1, Dl+1 is obtained from Dl by removing a column containing all 2’s except in row i, where the entry is
1, and then subtracting 1 from a di,j > 2. According to Lemma 4.3, we can always find a column with column sum 2k− 1
and entry di,j. Matrix Dm has edge disjoint path realizations, according to Lemma 2.4.

Let v denote the vertex with the largest column sum in D. Furthermore, let the vertices adjacent to leaves in the
paths be called ‘‘end vertices’’. Let G be a subset of the above-mentioned edge disjoint path realizations of Dm containing
the three paths corresponding to the caterpillars with shortest backbones in D, the legs of the other paths and all edges
incident to v. Observe that for each color, v has at most two backbone edges. When it is incident to exactly two backbone
edges, then at most one of these edges is incident to an end vertex. Furthermore, when v has one backbone edge, that is,
when v is an end vertex, then this edge is not incident to another end vertex. We call the backbone edges of v ‘‘capping
edges’’.

Then going from Dm to D, we construct the three aforementioned caterpillars and all the legs of other caterpillars,
adding one vertex v to G in each step. For each Dl to Dl−1 transition, if the removed column contains a 1 in a row not
corresponding to the three caterpillars, then add a leg between v and vj with color i and find a rainbow matching avoiding
vj in the backbones of the three caterpillars and extend these caterpillars by pulling these edges onto v. Such a rainbow
matching exists, according to Lemma 4.7. If row i contains one of the caterpillars constructed in this phase, then connect v
j
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to v with color i, find a rainbow matching in the backbones of the other caterpillars, and pull them onto v. Such a rainbow
atching exists, according to Lemma 4.7.
In this way, we construct all legs, the three caterpillars with the shortest backbones and all edges incident to v.

urthermore, we put all of these (appropriately colored) edges in G. For other backbones, the remaining degree of each
ertex (that is, the difference of its degree with color i in G and the corresponding entry in row i of D) is either 1 or
(except for v). The vertices with remaining degree 1 are exactly the end vertices of the backbones, as all their other
egrees are used for legs (and v is an end vertex if it has one capping edge). We are ready to enter Phase II.

hase II
We construct the backbones in increasing order according to their length. We add these backbones to G, and before

each backbone, let F denote the complement of G restricted to the current backbone vertices. Since the legs of the current
caterpillar are added, the two end vertices of the backbone are prescribed. Our task is to find a Hamiltonian path between
these two vertices in F . Although the majority of the degrees is large in F , we cannot directly apply Ore’s theorem, because
there might exist a few small degree vertices. We are going to cap the small degree vertices with high degree vertices,
and then extend them into a Hamiltonian path.

Let m denote the size of F . From Lemma 5.1, we know that m is larger than 3n
4 . We know only v can have a degree

reaching 2n
3 , and at most 11 vertices of G can have degrees reaching n

6 . If a degree in G is less than 2n
3 , then its degree in

is at least
3n
4

−
2n
3

=
n
12

.

All other vertices have degree less than n
6 . Thus, their degree in F is at least

3n
4

−
n
6

=
7n
12

.

Therefore, the sum of any two of these high degrees is at least 7n
6 .

If v is a backbone vertex in the current caterpillar, put its one or two capping edges into the set E. Then for each vertex
in the backbone that has degree at least n

6 (but less than 2n
3 ) in G, we distinguish four cases:

1. Vertex w is incident to a capping edge of v, and it is an end vertex. In this case, we do not have to find further
capping edges of w.

2. Vertex w is incident to a capping edge of v, and it is not an end vertex. Then we will find one more capping edge
of w.

3. Vertex w is not incident to a capping edge of v, and it is an end vertex. Then we will find one capping edge of w.
4. Vertex w is not incident to a capping edge of v, and it is not an end vertex. Then we will find two capping edges

of w.

We claim that we can find the necessary one or two neighbor vertices of w, denoted by u1 and u2 in F that have high
egree in F (at least 7n

12 ), not incident to any edge in E, and where at most one of them is an endpoint of the backbone.
Such neighbors must exist, because there are at most 30 forbidden points (at most 10 other low degree vertices and for
each of them, at most two neighbors incident to their capping edges). However, these low degree vertices have degree at
least n

12 in F , and n is at least 396. Therefore, there are at least three neighbors which are not forbidden. We can select
two of the three such that at most one of them is an endpoint of the backbone. We add edges (w, u1) and (w, u2) to E.

Now we construct the backbone. Arrange the backbone vertices in a cycle, starting and ending with the endpoints of
he backbone such that vertices incident to the same edge in E are neighbors. We set up such a permutation, since the
ndpoints do not have a common neighbor in edge set E. Then we apply an algorithm similar to Palmer’s algorithm to
onstruct a Hamiltonian path [1]. While there remain two neighbor vertices u1 and u2 around the cycle in a clockwise
irection not having an edge in F , we find a vertex pair w1 and w2 such that they are neighbors around the cycle, not
oth of them are endpoints of the backbone, and (u1, w1) ∈ E, (u2, w2) ∈ E, but (w1, w2) /∈ E.
By the pigeonhole principle, such a pair of vertices exists. Both u1 and u2 have high degree. The sum of their degrees

s at least 7n
6 . So there must exist at least n

6 pairs of neighbor vertices such that (u1, w1) ∈ E and (u2, w2) ∈ E. There are
at most 23 forbidden pairs from the at most 22 pairs forming the edges in E and the pair of endpoint vertices. However,
n
6 > 23.

We swap the appropriate arc of the cycle to make u1 be a neighbor of w1, and u2 be a neighbor of w2. With this
peration, we decrease the amount of neighbor pairs u1, u2 around the cycle that do not have an edge between them in
. After applying this operation a finite number of times, the number of such neighbors will reach 0. That is, there is a
amiltonian path in F between the two endpoint vertices of the backbone.
Since for each degree sequence we can find a Hamiltonian path in F between the two endpoints of the backbone, we

an construct a caterpillar realization of D. □
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6. Discussion

In this paper, we considered the caterpillar realizations of tree degree matrices. We presented necessary and sufficient
onditions when a 2 × n tree degree matrix has an edge disjoint caterpillar realization. Starting from k = 3, it seems
xtremely hard to find necessary and sufficient conditions for a caterpillar realization of a k × n tree degree matrix.
owever, the vertices having no common leaves seems to be a sufficient condition, that is, each vertex has degree 1
n at most one of the degree sequences. We were able to prove that this condition is sufficient when k ≤ 4, or when
≥ max{22k − 11, 396}. Naturally, n should be at least 2k, and we also proved that the conjecture is true if it is true for
ny n ≤ 4k − 2. However, it seems difficult to close the gap between n = 2k and n = 4k − 2, though it is well known
hat the conjecture is true for n = 2k [2].

Since any caterpillar is a tree, our conjecture is also a conjecture for edge disjoint tree realizations. The ‘‘no common
eaves’’ condition forces the column sums to be more or less evenly distributed, that is, most of the column sums are o(n).
t is an open question if other conditions forcing evenly distributed column sums are sufficient for caterpillar (or edge
isjoint tree) realizations. It is also an open question how many common leaves are necessary to find a counterexample
f a tree degree matrix that has no caterpillar realizations.
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ppendix

Up to permutations of degree sequences and vertices, there are 14 tree degree matrices on at most 10 vertices without
ommon leaves. This appendix gives an example caterpillar realization for all of them.
If the number of vertices is eight, there is only one possible tree degree matrix, each degree sequence is a path degree

equence (case 1).
If the number of vertices is eight, there are two possible cases: either all degree sequences are path degree sequences

case 2) or there is a degree 3 (case 3).
If the number of vertices is 10, there are 11 possible cases: all degree sequences are path degree sequences (case 4),

here is a degree 3 which might be on a vertex with a leaf (case 5) or without a leaf (case 6), there is a degree 4 (case 7)
r there are two degree 3’s in the degree sequences (cases 8–14).
The two 3’s might be in the same degree sequence. The leaves on these two vertices might be in the same degree

equence (case 8) or in different degree sequences (case 9).
If the two degree 3’s are in different degree sequences, they might be on the same vertex (case 10) or on different

ertices.
If the two degree 3’s are in different sequences, Di and Dj, and on different vertices u and v, consider the degrees of u

and v in Di and Dj which are not 3. They might be both 1 (case 11), or maybe one of them is 1 and the other is 2 (case
12), or both of them are 2. In this latter case, the degree 1’s on u and v might be in the same degree sequence (case 13)
or in different degree sequences (case 14).

The realizations are represented with an adjacency matrix, in which 0 denotes the absence of edges, and for each
degree sequence Di, i denotes the edges in the realization of Di.

1.

D =

⎛⎜⎝1 2 2 2 1 2 2 2
2 1 2 2 2 1 2 2
2 2 1 2 2 2 1 2
2 2 2 1 2 2 2 1

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 3 3 4 4
1 0 2 3 3 4 4 1
2 2 0 3 4 4 1 1
2 3 3 0 4 1 1 2
3 3 4 4 0 1 2 2
3 4 4 1 1 0 2 3
4 4 1 1 2 2 0 3
4 1 1 2 2 3 3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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2.

D =

⎛⎜⎝1 2 2 2 2 1 2 2 2
2 1 2 2 2 2 1 2 2
2 2 1 2 2 2 2 1 2
2 2 2 1 2 2 2 2 1

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 3 3 4 4 0
1 0 2 3 3 4 4 0 1
2 2 0 3 4 4 0 1 1
2 3 3 0 4 0 1 1 2
3 3 4 4 0 1 1 2 2
3 4 4 0 1 0 2 2 3
4 4 0 1 1 2 0 3 3
4 0 1 1 2 2 3 0 4
0 1 1 2 2 3 3 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3.

D =

⎛⎜⎝1 3 2 2 1 2 2 2 1
2 1 2 2 2 1 2 2 2
2 2 1 2 2 2 1 2 2
2 2 2 1 2 2 2 1 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 3 3 4 4 2
1 0 2 3 3 4 4 1 1
0 2 0 3 4 4 1 1 2
2 3 3 0 0 1 1 2 4
3 3 4 0 0 1 2 2 4
3 4 4 1 1 0 2 0 3
4 4 1 1 2 2 0 3 0
4 1 1 2 2 0 3 0 3
2 1 2 4 4 3 0 3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4.

D =

⎛⎜⎝1 2 2 2 2 1 2 2 2 2
2 1 2 2 2 2 1 2 2 2
2 2 1 2 2 2 2 1 2 2
2 2 2 1 2 2 2 2 1 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 3 3 4 4 0 0
1 0 2 3 3 4 4 0 0 1
2 2 0 3 4 4 0 0 1 1
2 3 3 0 4 0 0 1 1 2
3 3 4 4 0 0 1 1 2 2
3 4 4 0 0 0 1 2 2 3
4 4 0 0 1 1 0 2 3 3
4 0 0 1 1 2 2 0 3 4
0 0 1 1 2 2 3 3 0 4
0 1 1 2 2 3 3 4 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
5.

D =

⎛⎜⎝1 3 2 2 2 1 2 2 2 1
2 1 2 2 2 2 1 2 2 2
2 2 1 2 2 2 2 1 2 2
2 2 2 1 2 2 2 2 1 2

⎞⎟⎠
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A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 3 3 4 4 0 2
1 0 2 3 3 4 4 0 1 1
0 2 0 3 4 4 0 1 1 2
2 3 3 0 0 0 1 1 2 4
3 3 4 0 0 1 1 2 2 4
3 4 4 0 1 0 2 2 3 0
4 4 0 1 1 2 0 0 3 3
4 0 1 1 2 2 0 0 4 3
0 1 1 2 2 3 3 4 0 0
2 1 2 4 4 0 3 3 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
6.

D =

⎛⎜⎝1 2 2 2 3 1 2 2 2 1
2 1 2 2 2 2 1 2 2 2
2 2 1 2 2 2 2 1 2 2
2 2 2 1 2 2 2 2 1 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 3 3 4 4 0 2
1 0 2 0 3 4 4 0 1 3
0 2 0 3 4 4 0 1 1 2
2 0 3 0 4 0 1 1 2 3
3 3 4 4 0 1 1 2 2 1
3 4 4 0 1 0 2 2 3 0
4 4 0 1 1 2 0 3 3 0
4 0 1 1 2 2 3 0 0 4
0 1 1 2 2 3 3 0 0 4
2 3 2 3 1 0 0 4 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
7.

D =

⎛⎜⎝1 4 2 2 1 2 2 2 1 1
2 1 2 2 2 1 2 2 2 2
2 2 1 2 2 2 1 2 2 2
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 3 3 4 4 2 2
1 0 2 3 3 4 4 1 1 1
0 2 0 3 0 4 1 1 2 4
0 3 3 0 0 1 1 2 4 2
3 3 0 0 0 1 2 2 4 4
3 4 4 1 1 0 2 0 3 0
4 4 1 1 2 2 0 0 0 3
4 1 1 2 2 0 0 0 3 3
2 1 2 4 4 3 0 3 0 0
2 1 4 2 4 0 3 3 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8.

D =

⎛⎜⎝1 3 2 2 1 3 2 2 1 1
2 1 2 2 2 1 2 2 2 2
2 2 1 2 2 2 1 2 2 2
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 0 3 4 4 2 3
1 0 0 3 3 4 4 1 1 2
0 0 0 3 4 4 1 1 2 2
2 3 3 0 0 1 1 2 0 4
0 3 4 0 0 1 2 2 4 3
3 4 4 1 1 0 2 0 3 1
4 4 1 1 2 2 0 3 0 0
4 1 1 2 2 0 3 0 3 0
2 1 2 0 4 3 0 3 0 4
3 2 2 4 3 1 0 0 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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9.

D =

⎛⎜⎝1 3 3 2 1 2 2 2 1 1
2 1 2 2 2 1 2 2 2 2
2 2 1 2 2 2 1 2 2 2
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 3 3 4 4 2 2
1 0 2 3 3 0 4 1 1 4
0 2 0 3 4 4 1 1 2 1
0 3 3 0 0 1 1 2 4 2
3 3 4 0 0 1 2 2 4 0
3 0 4 1 1 0 2 0 3 4
4 4 1 1 2 2 0 0 0 3
4 1 1 2 2 0 0 0 3 3
2 1 2 4 4 3 0 3 0 0
2 4 1 2 0 4 3 3 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
10.

D =

⎛⎜⎝1 3 2 2 1 2 2 2 1 2
2 1 2 2 2 1 2 2 2 2
2 3 1 2 2 2 1 2 2 1
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 3 3 4 0 2 4
1 0 2 3 3 4 4 1 1 3
0 2 0 3 4 4 1 1 2 0
2 3 3 0 0 0 1 2 4 1
3 3 4 0 0 1 0 2 4 2
3 4 4 0 1 0 2 0 3 1
4 4 1 1 0 2 0 3 0 2
0 1 1 2 2 0 3 0 3 4
2 1 2 4 4 3 0 3 0 0
4 3 0 1 2 1 2 4 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
11.

D =

⎛⎜⎝1 3 2 2 1 2 2 2 1 2
3 1 2 2 2 1 2 2 2 1
2 2 1 2 2 2 1 2 2 2
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 3 3 4 4 2 2
1 0 2 3 3 4 4 1 1 0
0 2 0 3 0 4 1 1 2 4
2 3 3 0 0 0 1 2 4 1
3 3 0 0 0 1 2 2 4 4
3 4 4 0 1 0 2 0 3 1
4 4 1 1 2 2 0 0 0 3
4 1 1 2 2 0 0 0 3 3
2 1 2 4 4 3 0 3 0 0
2 0 4 1 4 1 3 3 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
12.

D =

⎛⎜⎝1 3 2 2 1 2 2 2 1 2
2 1 3 2 2 1 2 2 2 1
2 2 1 2 2 2 1 2 2 2
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠
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A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 3 3 4 4 2 1
0 0 2 3 3 4 4 1 1 1
0 2 0 3 4 4 1 1 2 2
2 3 3 0 0 1 1 2 0 4
3 3 4 0 0 1 2 2 4 0
3 4 4 1 1 0 2 0 3 0
4 4 1 1 2 2 0 0 0 3
4 1 1 2 2 0 0 0 3 3
2 1 2 0 4 3 0 3 0 4
1 1 2 4 0 0 3 3 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
13.

D =

⎛⎜⎝1 3 2 2 1 2 2 2 1 2
2 1 2 2 2 1 2 2 2 2
2 2 1 2 2 3 1 2 2 1
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 3 3 4 4 2 1
0 0 2 3 3 4 4 1 1 1
0 2 0 3 4 4 1 1 2 0
2 3 3 0 0 1 1 2 0 4
3 3 4 0 0 1 0 2 4 2
3 4 4 1 1 0 2 0 3 3
4 4 1 1 0 2 0 3 0 2
4 1 1 2 2 0 3 0 3 0
2 1 2 0 4 3 0 3 0 4
1 1 0 4 2 3 2 0 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
14.

D =

⎛⎜⎝1 3 2 2 1 2 2 2 1 2
2 1 2 2 2 1 2 2 2 2
2 2 1 3 2 2 1 2 2 1
2 2 2 1 2 2 2 1 2 2

⎞⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 3 3 4 4 2 1
0 0 2 3 3 4 4 1 1 1
0 2 0 3 4 0 1 1 2 4
2 3 3 0 0 1 1 2 4 3
3 3 4 0 0 1 0 2 4 2
3 4 0 1 1 0 2 0 3 4
4 4 1 1 0 2 0 3 0 2
4 1 1 2 2 0 3 0 3 0
2 1 2 4 4 3 0 3 0 0
1 1 4 3 2 4 2 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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