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Abstract
Despite theoretical benefits of collaborative robots, disappointing outcomes are well documented by clinical studies, spanning 
rehabilitation, prostheses, and surgery. Cognitive load theory provides a possible explanation for why humans in the real world are 
not realizing the benefits of collaborative robots: high cognitive loads may be impeding human performance. Measuring cognitive 
availability using an electrocardiogram, we ask 25 participants to complete a virtual-reality task alongside an invisible agent that 
determines optimal performance by iteratively updating the Bellman equation. Three robots assist by providing environmental 
information relevant to task performance. By enabling the robots to act more autonomously—managing more of their own behavior 
with fewer instructions from the human—here we show that robots can augment participants’ cognitive availability and decision- 
making. The way in which robots describe and achieve their objective can improve the human’s cognitive ability to reason about the 
task and contribute to human–robot collaboration outcomes. Augmenting human cognition provides a path to improve the efficacy of 
collaborative robots. By demonstrating how robots can improve human cognition, this work paves the way for improving the cognitive 
capabilities of first responders, manufacturing workers, surgeons, and other future users of collaborative autonomy systems.
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Significance Statement

People will be using robots at home and in their jobs. During the creation of a robot, design choices are made regarding how a robot 
describes and accomplishes its goals. While robot behavior is known to impact human perception, here we show that robot design 
choices affect the human’s physiological cognitive availability and decision-making. Human cognition improves when the robots 
act more autonomously, managing more of their own behavior with fewer instructions from the human. Augmenting human cogni
tion provides a path to improve the efficacy of collaborative robots. By demonstrating how robots can improve human cognition, this 
work paves the way for improving the cognitive capabilities of first responders, manufacturing workers, surgeons, and other future 
users of collaborative autonomy systems.
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Introduction
For decades, researchers have envisioned robots that enhance hu
manity by working collaboratively with humans. As robotic tech
nology advances—with robots outperforming humans at both 
physical and computational tasks—a future with ubiquitous col
laborative robots appears eminently achievable. However, despite 
exceeding the necessary technical requirements, robots have yet 
to demonstrate an unmitigated benefit to humans when there ex
ists an alternative solution that does not rely on robots. For ex
ample, robot-assisted abdominopelvic surgery only reduces the 
frequency of surgical complications in 4 out of 50 randomized 
controlled trials, despite being less invasive (1). Robot-assisted 
upper-limb therapy with the MIT-Manus does not result in a stat
istically significant improvement in motor function compared to 
intensive therapy in a 12-week randomized controlled trial with 
127 stroke patients (2), and results from lower-limb rehabilitation 

studies are similarly ambiguous (3–5). Lower-limb robotic pros

theses do not result in a statistically significant improvement in 

energetic expenditure in a randomized crossover study with 12 

amputees (6). Disaster relief robots generally perform tasks in 

areas too dangerous for humans instead of completing tasks 

alongside first responders (7–12). Robots on manufacturing floors 

or in homes rarely interact with humans. With no explanation for 

why collaborative robots are not producing the desired outcomes 

in the real world, it is unclear how the field should proceed.
Augmenting human cognition—that is, the human’s ability to 

reason—provides a path for improving collaboration outcomes. 

We demonstrate that robots can affect a human’s ability to rea

son, measuring participants’ physiological cognitive availability, 

and decision-making in a virtual-reality (VR) environment. The 

utility of current collaborative robots may be undermined by a re

duction in the human’s capability to contribute to human–robot 
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team performance. Several studies point to the relevance of cog
nition in powered wheelchair operation (13), prosthesis control 
(14, 15), and surgery (16). Although different areas of the brain 
govern different types of activities, such as motor control, mem
ory, strategic planning, and sensory perception, prior work shows 
that high demands on one type of activity affects performance at 
another (17–19). We show that allowing the robot to act more au
tonomously, thereby reducing the communication requirements 
associated with using the robot, improves human cognition and 
allows the human to realize the benefits of robotic assistance.

By discovering that collaborative robots affect human cogni
tion, this work introduces an unexplored research area at the 
intersection of robotics, computational neuroscience, and cogni
tive load theory that could impact the experience of all future 
users of autonomous systems. Although it is known that robots 
can influence human capability through facilitating the motor 
learning of prespecified tasks (20), augmenting human cognition 
allows the robot to improve human performance without know
ing the task the human is attempting to accomplish. In many set
tings, we expect humans to possess knowledge about the task and 
how the task should be completed that is unavailable to the robot. 
We expect this work will prompt research that leverages our find
ings to develop collaborative robots that simultaneously improve 
cognitive availability and performance as well as research that 
uncovers new ways in which robot design affects human cogni
tion. First responders, manufacturing workers, and surgeons, 
among others, may benefit from improved cognitive availability 
and decision-making.

VR experimental platform
At home and in their jobs, humans experience factors that influ
ence their ability to make decisions—for example, time pressure 
(21), fear (22, 23), stress (24), and competing demands on their at
tention (25). When designing human studies, researchers typically 
minimize external factors to simplify study procedures and re
duce experimental noise. However, in prior work, trends in cogni
tive load depend on the task demands experienced by the human 
(26–29). Here, we embrace the complexity inherent in real-world 
tasks and environments. Participants are immersed in a VR city 
environment (Fig. 1) and asked to collect treasure while being 
chased by adversaries patrolling the environment. Three robots 
augment participants’ sensory understanding of their environ
ment by providing the locations of possible adversaries on a “min
imap”—a map placed over part of the visual field of view. 
Participants provide instructions for the robots using a haptic tab
let that can render spatially varying textures (30, 31), enabling the 
user to haptically localize themselves in the environment while 
their vision is occluded by the VR headset. VR can replicate fea
tures of real-world environments that may contain collaborative 
robots while providing a controlled experimental setting.

Control theory provides a framework for computationally in
terpreting the consequences of one’s actions in complex environ
ments. We program an optimal agent to complete the VR task 
alongside the participant. At each intersection, the optimal agent 
chooses the navigation decision that will maximize expected 
game reward. Similar techniques have been used to beat inter
national human champions in Chess and Go (32) as well as model 
animal (33, 34) and human behavior (35–40). The optimal agent’s 
decision is compared to the participant’s decision using a re
inforcement learning concept called regret (41), visualized in 
Fig. 1. Participants experience regret if they could have made a 
better navigation decision based on available information. If a 

participant receives poor or incomplete information from the ro
bots, it is still possible for the participant to make good, low-regret 
decisions. Since regret is measured relative to available informa
tion, regret controls for varying quantity or quality of information 
due to the human inputs or robot performance at information ac
quisition. Moreover, the optimal agent enables human perform
ance at making decisions to be assessed separately from the 
entire human–robot team at receiving a high game score.

We conduct a human study where 25 participants with at least 
1,000 h of video game experience complete 10, randomized, 5-min 
experimental trials. Each trial occurs in one of two VR environ
ments that differ in building density. We compare four human– 
robot collaboration paradigms to a no robots condition in which 
the participant completes the task with no robot assistance. 
During waypoint control, the participant provides a path (i.e. a set 
of waypoints) for each robot to follow (8, 42). During user coverage 
control, the participant can command all three robots at once by 
providing a region of interest; the robots autonomously coordin
ate and collectively decide how to explore the user-defined region 
of interest (43). For shared coverage control, the robots consider both 
the high-priority regions of interest provided by the participant 
and high-priority regions identified autonomously by the robots 
(44). Lastly, during fully autonomous coverage control, the participant 
does not provide instructions for the robots, and the robots 
independently determine their coverage goals (45–49). The algo
rithms for specifying the coverage goals for each of the three 
aforementioned coverage control paradigms, including the shared 
specification for shared coverage control, are developed for this ex
periment, and the decentralized strategy for providing coverage 
of a distribution is adapted from Abraham and Murphey (45).

Results
In this section, we evaluate whether the robot control paradigm 
affects human cognition. We hypothesize that the level of robot 
autonomy has a statistically significant effect on the number of 
instructions required to produce the desired behavior, the hu
man’s cognitive availability, and the quality of human decision- 
making. We further hypothesize that robotic assistance will result 
in a statistically higher game score for paradigms associated with 
better human cognition.

Physical interaction requirements decrease 
with increasing robot autonomy
As the level of autonomy increases in Fig. 2A, fewer human in
structions are necessary to produce the desired robot behavior. 
Level of autonomy has a statistically significant effect on the 
number of human commands provided during each trial 
(P < 0.001, F(2, 46) = 10.21). No Robots trials with no robotic assist
ance and fully autonomous coverage control trials have zero physical 
interaction requirements.

During waypoint control, the human provides distinct paths (i.e. 
a set of sequential waypoints) for each robot to follow. Each way
point input requires the human to execute a four-action proced
ure: (i) a double tap to indicate the start of an input, (ii) an 
action where the user indicates a path for the robot to follow, 
(iii) another double tap to indicate the end of the input, and (iv) 
an additional tapping action to indicate the robot for which the 
waypoints are intended. To update the behavior of all n = 3 robots, 
waypoint control requires a total of 4 × n = 12 user actions. Due to 
the large physical interaction requirements, participants often 
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Fig. 1. Sensory augmentation changes the regret landscape. The robots inform participants of possible adversaries in the environment, expanding the 
participant’s sensory field beyond the regions of the environment that are visually available. A) The experimental platform includes an HTC Vive headset, 
a VR environment, robot control algorithms, and a tactile human interface. B) Sensory augmentation alters the highest reward path through the 
environment. For each navigation decision, the optimal agent considers 46 = 4, 096 paths through the environment, determining how each path will 
affect the expected reward. C) The experimental task involves collecting treasures and avoiding adversaries. D) After detecting an adversary, participants 
generally move away from the adversary (right, left, or down); when participants move toward the adversary, they generally have high regret. 
Thirty-second paths are transformed to a coordinate system in which the adversary is detected at location (0,1) facing downward, and the start of the 
participant’s path is at location (0,0). E) We demonstrate the consequences of a sample participant’s decisions on the game reward according to the 
optimal agent. Yellow detections (where a robot sees a possible adversary) inform future decisions. With sensory augmentation, the optimal agent can 
anticipate more opportunities for a lost life, resulting in greater variation in how decisions are expected to affect game reward. Regret is the difference in 
expected reward between the decisions of the optimal agent and the decisions of the participant. We want the autonomy to help push the green line 
(the participant’s path) up as far as possible, minimizing regret.
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chose to update only the behavior of one of the robots in response 
to changing game conditions.

When the robots are allowed to manage how the robot paths 
are specified during user coverage control, the physical interaction 
required to direct the behavior of all robots diminishes. One com
mand consisting of three actions (one double tap to indicate the 
start of an input, an action where the user shades the regions of 
interest, and another double tap to send the command to the ro
bots) updates the behavior of all robots. Unlike waypoint control 
where the physical interaction requirements scale linearly with 
the number of robots, one command indicating the regions of 
interest applies to an arbitrary number of robots.

During shared coverage control, the robots are allowed to contrib
ute to a shared specification of the regions of interest. Using a 
computational model of the human’s sensory field and exact loca
tions of previously detected people, the robots can anticipate 

some regions that are of interest to the human. Consequently, 
participants find that fewer commands are necessary to produce 
the desired robot behavior.

Cognitive availability increases with increasing 
robot autonomy
To provide instructions for the robots, the user must devote cogni
tive resources to producing the contents of the instructions and 
operating the interface. When cognitive workload increases, the 
heart pumps faster to supply oxygen and other essential nutrients 
to the brain (50). Using an electrocardiogram (ECG), we compute 
participants’ average “RR” interval, the time between consecutive 
“R” peaks on an ECG signal, which is a more precise method of 
measuring heart rate or pulse. Although there are many other 
physiological measures of cognitive availability ranging from 
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decisions. Regret is the expected reward of the optimal agent’s decision minus the expected reward of the player’s decision (41) and is normalized here by 
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pupil diameter to skin conductivity (51), heart rate and its var
iants, such as the “RR” interval, are the most frequently reported 
physiological measure of cognitive availability (52). Due to the 
psychological biases associated with subjective measurements 
of cognitive availability (16), we do not use surveys like the 
NASA-TLX. Moreover, unlike other measures like the variation 
in the “RR” interval (often referred to as heart rate variability), 
the effect of cognitive workload on the “RR” interval is consistent 
for at least 1 h (53). A greater “RR” interval corresponds to more 
steady-state cognitive availability and more cognitive resources 
to make decisions and respond to unexpected events.

As the level of autonomy increases (Fig. 2B), participants 
have significantly more cognitive availability (P < 0.001, 
F(4, 88) = 5.47). This result is consistent with prior work that 
uses a secondary task to measure cognitive availability (54). This 
trend can be largely explained by the physical interaction require
ments of each human–robot paradigm. Participants have the least 
cognitive availability using waypoint control, the human–robot 
paradigm with the greatest physical interaction requirements. It 
is plausible that different types of commands (e.g. waypoints vs. 
shading) have different cognitive requirements; providing way
points requires participants to reason from the robot’s perspec
tive, which hurts performance at an assembly task (55, 56). By 
changing the structure of the human–robot interaction and allow
ing the robots to manage some or all of their own behavior using 
shared coverage control or fully autonomous coverage control, we signifi
cantly improve participants’ cognitive availability.

Human decision-making improves with 
increasing robot autonomy
Improved cognitive availability implies that the human has more 
cognitive resources to dedicate to tasks besides operating the ro
bots. We instruct participants to navigate through the environ
ment such that they avoid adversaries and collect treasures, 
maximizing a reward quantity known to participants prior to 
the experiment as the final game score. To determine if the ob
served differences in cognitive availability influence human 
performance, we look at the discrete decisions made by partici
pants at intersections in the environment, comparing the hu
man’s decisions to the optimal agent’s decisions using the regret 
metric. The optimal agent learns from 10,000 forward simulations 
of the environment, where the optimal agent executes six ran
domly selected navigation actions in each simulation.

In Fig. 2C, we show that improved cognitive availability trans
lates to better navigation decisions. Level of autonomy significant
ly affects decision regret (P < 0.001, χ2 = 30.20). While many report 
participants’ perceived cognitive availability when using a robot 
(54, 57–59), we measure participants’ physiological cognitive 
availability and link changes in cognitive availability to the hu
man’s performance separate from the performance of the entire 
human–robot team. Our finding that human decision-making 
can be impacted by robots means this research is urgently rele
vant to applications like disaster response and surgery, where hu
man decision-making is critical to human lives.

Only shared control improves game score 
compared to no robots
Since the robots provide participants with information relevant to 
task performance, it would be understandable to expect that per
formance would improve with robotic assistance. However, most 
robotic-assistance paradigms do not significantly change the 
game score compared to the no robots condition: waypoint control 

(P = 0.842, t(47) = 0.20), user coverage control (P = 0.783, t(47)= −0.28), 
or fully autonomous coverage control (P = 0.972, t(47) = 0.035). This re
sult complements the wide range of recent studies that found no 
improvement in clinical outcomes due to robotic assistance (1–6).

The only control paradigm that resulted in a significantly dif
ferent game score compared to no robots is shared coverage control 
(P = 0.031, t(47) = −2.22), consistent with prior work showing the 
performance benefits of shared control paradigms (20, 59–63). 
Likewise, we find that level of autonomy has a statistically signifi
cant affect on game score due to superior performance using 
shared coverage control, as explained in Table S4. Human–robot 
team performance is a combination of human performance and 
robot performance. No paradigm resulted in statistically more 
cognitive availability than shared coverage control. While partici
pants using fully autonomous coverage control have high cognitive 
availability and decision-making capabilities, fully autonomous 
robot behavior does not allow the human to communicate real- 
time coverage needs. The utility of robots in high-pressure scen
arios depends on the format of the human–robot communication. 
By minimizing the cognitive load induced by using a robot, we 
demonstrate that robots can be helpful in achieving task goals.

Discussion
Here, we show that robots can augment human cognition at an 
unknown task. This finding has implications for the physiological 
experience and capabilities of all future users of robots. By offer
ing an explanation for why collaborative robots are not producing 
desired outcomes, this work provides a path for enabling humans 
to benefit from advances in robotic technology. In particular, im
paired individuals reliant on a robot for mobility could use the 
additional cognitive availability to pursue hobbies, improving 
quality of life, or increase their own performance at the task, im
proving clinical outcomes.

Until now, the connection between robots and cognitive avail
ability may have been obfuscated by a focus on relatively simple 
experimental tasks with few if any distractions. When a human 
is experiencing low-task demands, adding workload can improve 
cognition (26). For example, in the field of education, increasing 
students’ cognitive engagement and deceasing cognitive avail
ability through interactive and active learning strategies improves 
performance at information retention (64). Similarly, for control
ling the x − y position of a formation of robots, participants with 
less cognitive availability perform better (65). However, when 
the human is experiencing high-task demands and approaching 
their cognitive capacity, additional workload hurts cognition 
(26, 29). Moreover, as task demands increase, alleviating workload 
has a stronger effect on cognition (26–28). In line with prior work, 
we find that statistical trends strengthen for the more complex, 
low-density virtual environment compared to the high-density 
virtual environment as detailed in Fig. S11. In the low-density en
vironment, there are more opportunities for high-regret decisions. 
To identify trends in cognition, it may be necessary to immerse 
participants in environments similar to the settings in which peo
ple will use robots.

By demonstrating that robot design, including the algorithms 
that determine how the robots describe and achieve their object
ive, affects the physiological state of the human operator—our 
work connects decades of research on cognitive load theory to 
the field of robotics. A robot’s hardware and software determine 
the format in which the robot can communicate with the human. 
Notable human–robot communication paradigms include tablets, 
natural language, gestures, programming interfaces, and human 
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motion (66–68). Yet, improvements to the mechanical abilities of 
robots typically occur without the involvement of human users. 
To inform future robotics research, this work begins the process 
of developing guidelines for how one should expect robot design 
choices to affect a human’s physiological cognitive availability 
and performance.

While the goals of the treasure-gathering task presented here 
differ from many current and future tasks for collaborative ro
bots—especially the clinical tasks motivating this work—our ex
periment is similar to a wide range of real-world settings in two 
important ways. Firstly, our task stresses participants’ cognitive 
capacity, which is a known consideration in powered wheelchair 
operation (13), prosthesis control (14, 15), and surgery (16). 
Secondly, the human participant is performing other tasks while 
operating the robot, concurrently navigating their own position 
in the environment and making strategic decisions about how to 
best use the robots. Additionally, our task is experimentally prac
tical; it enables a straightforward and computable interpretation 
of the quality of each decision, allowing us to connect cognitive 
availability to improved human performance. The clinical tasks 
that form part of the motivation for this work do not have similar 
structure supporting assessment of decision-making (e.g. robot- 
assisted therapy does not necessarily take place on a grid). By 
demonstrating that it is possible for robots to augment human 
cognition and that augmenting human cognition can be an inter
mediate step toward improving human–robot collaboration out
comes, this work is paving the way for new strategies for 
augmenting cognition that are specific to rehabilitation, pros
theses, surgery, manufacturing, search and rescue, disaster relief, 
or personal robots.

Our specific approach to improving human cognition could be 
applicable to surgeons and first responders. In both settings, the 

human is responsible for specifying the path of the robot, commu
nicating both the task goal and how the robot should accomplish 
the task. During some robot-assisted surgeries, the surgeon con
trols the robot’s position as it physically probes different locations 
on an organ (69, 70). Similarly, following disasters such as the 2021 
landslide in Norway (10) and Hurricane Harvey (7), among others 
(8, 11, 42), the first responders individually piloted the path of each 
robot, akin to the waypoint control paradigm in our study. By en
abling robots to act more autonomously using the strategy pro
posed here, researchers may be able to improve the cognitive 
availability and decision-making of surgeons and first responders, 
whose cognitive performance is critical to human lives.

Materials and methods
VR environment
Two distinct VR environments are designed to portray areas of 
low-spatial visibility (high-building density) and high-spatial visi
bility (low-building density). For the low-density environment, 
25% of the buildings are removed and replaced with outdoor fea
tures that might be found in a city, such as parks, outdoor dining, 
and public seating areas. Participants use an HTC Vive headset 
and controllers to maneuver in the VR environment created using 
Unity 3D software. So that the participant can always access the 
tablet interface on the table in front of them, participants com
plete trials while sitting in a chair that does not swivel, using the 
controllers to move within the VR world. In addition to a first- 
person view of the virtual world, a minimap is displayed to the 
user. The minimap shows the overhead view of the environment, 
as well as the locations of the target and player at all times. (The 
“player” is the participant’s virtual embodiment within the VR en
vironment.) During trials with robot assistance, the minimap also 
displays the locations of the drones and temporarily displays the 
locations of any detected people in the environment for 3 s. In the 
30 × 30 unit environment, the drones detect people within a 2 × 2 
unit square area cannot predict the future path of a person, and 
the drone’s velocity is capped at 30 units per second. To aid in spa
tial orientation in the environment, the minimap display rotates 
so that the participant’s view always corresponds to “up” in the 
minimap. Next to the minimap, the number of lives left and the 
game time are represented by a bar and time counter. Final 
game score is the number of treasures collected plus three times 
the number of lives leftover. Participants began each trial with 8 
lives, corresponding to 24 game points; in Fig. 3, we subtract par
ticipants’ initial game score from their final game score.

Tactile interface for user commands
Participants use a TanvasTouch monitor (30, 31) with surface hap
tics to send commands to the robots. The TanvasTouch renders 
textures on the smooth screen by modulating friction underneath 
the user’s fingertip. We create different textures for the borders of 
the workspace and the user’s location as different textures. The 
user’s location is represented by a fine texture that results in lar
ger vibrations in the finger. The environment boundaries are rep
resented by a course texture that results in smaller vibrations in 
the finger. The darkness of a given pixel in Fig. 1A corresponds 
to the level of friction felt as the participant’s finger brushes 
over the surface. The display dynamically updates according to 
the person’s position and orientation to match the minimap visu
ally displayed in the Unity environment. Auditory feedback fol
lows physical interaction with the tablet. The use of a haptic 
tablet enables the human operator to orient themselves in their 
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Fig. 3. Despite the common assumption that robots should improve 
performance, the effect of robotic assistance on game score depends on 
the format of the human–robot interaction. Shared coverage control is 
the only assistance paradigm that simultaneously reduces human 
operations, improves cognitive availability, and improves 
decision-making, while incorporating the participant’s intent, explaining 
its advantage. The area of each shape is equal, and the relative width 
corresponds to the number of trials that resulted in a particular game 
score. The dotted lines indicate the quartiles of the distribution. “n.s.” 
indicates no statistical significance.
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VR environment and send commands while wearing the VR 
headset.

Shared control of multiple robots
During ergodic control (43–49, 71), the robots use a metric from in
formation theory (72) to minimize the difference between two spa
tial distributions over the environment: (i) the target distribution 
representing the expected value of sensory augmentation and 
(ii) a distribution representing where the robots have visited. 
One target distribution is provided to all three robots, which au
tonomously coordinate with each other. During user coverage con
trol, the target distribution is provided by the participant 
shading high-priority regions on a tablet. During fully autonomous 
coverage control, the robots use a computational model of the hu
man’s sensory field and exact locations of previously detected 
people to autonomously build the target distribution; the robots 
cannot independently anticipate the participants’ navigation 
goals. During shared coverage control, the human and autonomous 
distributions are normalized, given equal weight, and combined.

Procedure
At the beginning of the experiment, 33 participants provided in
formed consent. The protocol was approved by the Institutional 
Review Board at Northwestern University. All methods were per
formed in accordance with the relevant guidelines and regula
tions. Participants with poor visual acuity without contacts were 
excluded from this study due to the VR headset. All participants 
were between ages 18 and 32. After data collection, we excluded 
participants with <1,000 h of video game experience over their 
lifetime, as determined by a prestudy questionnaire.

The participants then completed a training session that lasted 
approximately 1 h and was composed of a tutorial series that fam
iliarized them with the different parts of the experimental setup 
and interface. After the training session, the researcher placed 
three ECG electrodes provided by SOMNOmedics (73). The 
SOMNOtouch PSG device was positioned using a chest strap, 
and the SpO2 soft silicone finger clip was placed on the left 
hand. Participants performed each of the 10, randomized, 5-min 
experiment rounds.

ECG data
ECG measurements are collected using SOMNOtouch RESP 
throughout the entire experiment. We use somnomedics’s com
mercial software to compute the “RR interval” for every heartbeat, 
defined as the time period between consecutive “R” peaks in the 
ECG signal. Once we remove erroneous measurements, every re
maining trial has acceptable data for at least 4 min out of the 
5-min trial. Since participant 9’s mean “RR” interval is (>2.9 SDs) 
lower than the remaining participants mean “RR” interval, we ex
clude participant 9 from the ECG analysis.

Optimal agent formulation
The optimal agent formulates its interaction with the environ
ment as a Markov decision process (MDP). An MDP is defined by 
a set of states (consisting of all intersections in the environment), 
actions (cardinal directions: north, south, east, and west), transi
tion probabilities (set to equal 1), and rewards (based on game 
score) (74, 75). The evolution of each state–action pair is deter
mined by simulating a computational model of the environment, 
determining the next intersection the optimal agent will be at and 
any resultant changes in reward. A new MDP is built every time 
the virtual position of the participant arrives at an intersection. 

The way the environment evolves includes probabilistic compo
nents for the adversaries’ movements, which impacts the MDP 
through the reward. Despite using no discount factor, future re
wards regarding the adversaries are attenuated due to increasing 
uncertainty regarding each adversary’s location. Successive sim
ulations of the optimal agent taking random actions through the 
environment allows the optimal agent to estimate the expected 
reward for each state–action pair within the MDP.

Using the MDP for any particular instance where the virtual 
position of the participant arrives at an intersection, the optimal 
agent determines the expected reward associated with all four 
possible actions the participant could take. Expected reward is de
termined by the Bellman equation (75), looking six intersections 
into the future. We use the expectation maximization formula
tion that averages over all possible paths following a particular 
turn to allow the optimal agent to consider the robustness of 
any particular turn to future changes in information. The optimal 
agent chooses the action with the highest expected reward.

Statistical analysis
For the number of commands and “RR” interval measures, repeated 
measures ANOVAs with within-participant factors for level of auton
omy and building density is performed in R (α = 0.05). Assumptions 
are tested using Shapiro–Wilk test for normality and Mauchly’s 
sphericity test. To help determine which control paradigm is different 
from the rest, post hoc, pairwise, and two-way t tests with a 
Bonferroni correction for multiple comparisons are performed.

For the regret measure, there are an unspecified number of 
samples per trial. To allow within-trial statistical variation to be 
considered, we fit the data to a linear mixed model using the 
LMER function in R with the experimental factors (level of auton
omy and building density) as predictors and participant as a ran
dom factor. To statistically compare decisions of similar quality, 
we group decisions according to the maximum impact of the deci
sion on the expected reward (the expected reward of the best de
cision minus the worst decision). The three groups are [0, 1), [1, 2), 
and [2, 3), where decisions with a maximum impact of ≥ 3 are ex
cluded from analyses, and we include the group as another ran
dom factor in the linear mixed model. We use Wald χ2 tests to 
evaluate statistical significance; similar to an ANOVA, the Wald 
χ2 test evaluates whether a given factor explains some of the vari
ation in an outcome measure. Then, a post hoc Tukey test for mul
tiple comparisons is performed.

For the game score measure, we perform four paired two-sided 
t tests to compare each of robot-assistance paradigm to the no ro
bots condition. For each of the aforementioned tests, we are un
able to reject the null hypothesis that the paired difference 
between paradigms is normally distributed using the Shapiro– 
Wilk test for normality.
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72 Mathew G, Mezić I. 2011. Metrics for ergodicity and design of erg

odic dynamics for multi-agent systems. Phys D: Nonlinear Phenom. 
240(4–5):432–442.

73 Somnomedics: innovative and mobile diagnostics [2020 Nov]. 
https://somnomedics.de/enus/the-usa-home-of-innovative-and- 
mobile-diagnostics-2/.

74 Kearns M, Singh S. 1998. Finite-sample convergence rates for 
q-learning and indirect algorithms. Adv Neural Inf Process Syst. 11: 

996–1002.
75 Sutton RS, Barto AG. 2018. Reinforcement learning: an introduction. 

Cambridge (MA): MIT Press.
76 Schlafly M, Prabhakar A. 2023. Control algorithm code for “col

laborative robots can augment human cognition in regret-sensi
tive tasks”. https://doi.org/10.5281/zenodo.10377309.

77 Schlafly M. 2023. Haptics code for “collaborative robots can aug

ment human cognition in regret-sensitive tasks”. https://doi.org/ 
10.5281/zenodo.10374409.

Schlafly et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/2/pgae016/7564677 by R
aghu N

anda user on 04 M
arch 2024

https://somnomedics.de/enus/the-usa-home-of-innovative-and-mobile-diagnostics-2/
https://somnomedics.de/enus/the-usa-home-of-innovative-and-mobile-diagnostics-2/
https://doi.org/10.5281/zenodo.10377309
https://doi.org/10.5281/zenodo.10374409
https://doi.org/10.5281/zenodo.10374409


78 Popovic K, Schlafly M. 2023. Virtual reality code for “collaborative 
robots can augment human cognition in regret-sensitive 
tasks”. https://doi.org/10.5281/zenodo.10377640.

79 Schlafly M, Schlafly G, Popovic P. 2023. Data analysis code for 
“collaborative robots can augment human cognition in regret- 
sensitive tasks”. https://doi.org/10.5281/zenodo.10377271.

80 Schlafly M. 2023. MDP code for “collaborative robots can aug
ment human cognition in regret-sensitive tasks”. https://doi. 
org/10.5281/zenodo.10374434.

81 Schlafly M. 2023. Dataset for “collaborative robots can augment 
human cognition in regret-sensitive tasks”. https://doi.org/10. 
5281/zenodo.10373665.

10 | PNAS Nexus, 2024, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/2/pgae016/7564677 by R

aghu N
anda user on 04 M

arch 2024

https://doi.org/10.5281/zenodo.10377640
https://doi.org/10.5281/zenodo.10377271
https://doi.org/10.5281/zenodo.10374434
https://doi.org/10.5281/zenodo.10374434
https://doi.org/10.5281/zenodo.10373665
https://doi.org/10.5281/zenodo.10373665

	Collaborative robots can augment human cognition in regret-sensitive tasks
	Introduction
	VR experimental platform

	Results
	Physical interaction requirements decrease with increasing robot autonomy
	Cognitive availability increases with increasing robot autonomy
	Human decision-making improves with increasing robot autonomy
	Only shared control improves game score compared to no robots

	Discussion
	Materials and methods
	VR environment
	Tactile interface for user commands
	Shared control of multiple robots
	Procedure
	ECG data
	Optimal agent formulation
	Statistical analysis

	Acknowledgments
	Supplementary Material
	Funding
	Author Contributions
	Data Availability
	References




